135403-Thumbnail Image.png
Description
Hydrocephalus is a chronic medical condition characterized by the excessive accumulation of cerebrospinal fluid in the brain. It is estimated that 1-2 of every 1000 babies in the United States is born with congenital hydrocephalus, with many individuals acquiring hydrocephalus

Hydrocephalus is a chronic medical condition characterized by the excessive accumulation of cerebrospinal fluid in the brain. It is estimated that 1-2 of every 1000 babies in the United States is born with congenital hydrocephalus, with many individuals acquiring hydrocephalus later in life through brain injury. Despite these alarming statistics, current shunts for the treatment of hydrocephalus display operational failure rates as high as 40-50% within two years following implantation. Failure of current shunts is attributed to complexity of design, external implantation, and the requirement of multiple catheters. The presented hydrogel wafer check valve avoids all the debilitating features of current shunts, relying only on the swelling of hydrogel for operation, and is designed to directly replace failed arachnoid granulations- the brain’s natural cerebrospinal fluid drainage valves. The valve was validated via bench-top (1) hydrodynamic pressure-flow response characterizations, (2) transient response analysis, and (3) overtime performance response in brain-analogous conditions. In-vitro measurements display operation in range of natural CSF draining (cracking pressure, PT ~ 1–110 mmH2O and outflow hydraulic resistance, Rh ~ 24 – 152 mmH2O/mL/min), negligible reverse flow leakages (flow, QO > -10 µL/min), and demonstrate the valve’s operational reproducibility of this new valve as an implantable treatment.


Download restricted.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • In-vitro validation of a novel miniaturized hydrogel wafer check valve for the treatment of hydrocephalus
Contributors
Date Created
2016-05
Resource Type
  • Text
  • Machine-readable links