135340-Thumbnail Image.png
Description
Preventive maintenance is a practice that has become popular in recent years, largely due to the increased dependency on electronics and other mechanical systems in modern technologies. The main idea of preventive maintenance is to take care of maintenance-type issues

Preventive maintenance is a practice that has become popular in recent years, largely due to the increased dependency on electronics and other mechanical systems in modern technologies. The main idea of preventive maintenance is to take care of maintenance-type issues before they fully appear or cause disruption of processes and daily operations. One of the most important parts is being able to predict and foreshadow failures in the system, in order to make sure that those are fixed before they turn into large issues. One specific area where preventive maintenance is a very big part of daily activity is the automotive industry. Automobile owners are encouraged to take their cars in for maintenance on a routine schedule (based on mileage or time), or when their car signals that there is an issue (low oil levels for example). Although this level of maintenance is enough when people are in charge of cars, the rise of autonomous vehicles, specifically self-driving cars, changes that. Now instead of a human being able to look at a car and diagnose any issues, the car needs to be able to do this itself. The objective of this project was to create such a system. The Electronics Preventive Maintenance System is an internal system that is designed to meet all these criteria and more. The EPMS system is comprised of a central computer which monitors all major electronic components in an autonomous vehicle through the use of standard off-the-shelf sensors. The central computer compiles the sensor data, and is able to sort and analyze the readings. The filtered data is run through several mathematical models, each of which diagnoses issues in different parts of the vehicle. The data for each component in the vehicle is compared to pre-set operating conditions. These operating conditions are set in order to encompass all normal ranges of output. If the sensor data is outside the margins, the warning and deviation are recorded and a severity level is calculated. In addition to the individual focus, there's also a vehicle-wide model, which predicts how necessary maintenance is for the vehicle. All of these results are analyzed by a simple heuristic algorithm and a decision is made for the vehicle's health status, which is sent out to the Fleet Management System. This system allows for accurate, effortless monitoring of all parts of an autonomous vehicle as well as predictive modeling that allows the system to determine maintenance needs. With this system, human inspectors are no longer necessary for a fleet of autonomous vehicles. Instead, the Fleet Management System is able to oversee inspections, and the system operator is able to set parameters to decide when to send cars for maintenance. All the models used for the sensor and component analysis are tailored specifically to the vehicle. The models and operating margins are created using empirical data collected during normal testing operations. The system is modular and can be used in a variety of different vehicle platforms, including underwater autonomous vehicles and aerial vehicles.


Download restricted.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Download count: 1

Details

Title
  • Design and Implementation of an Electronic Preventative Maintenance System for Autonomous Vehicles
Contributors
Date Created
2016-05
Resource Type
  • Text
  • Machine-readable links