135102-Thumbnail Image.png
Description
Magnetic resonance imaging (MRI) of changes in metabolic activity in tumors and metabolic abnormalities can provide a window to understanding the complex behavior of malignant tumors. Both diagnostics and treatment options can be improved through the further comprehension of the

Magnetic resonance imaging (MRI) of changes in metabolic activity in tumors and metabolic abnormalities can provide a window to understanding the complex behavior of malignant tumors. Both diagnostics and treatment options can be improved through the further comprehension of the processes that contribute to tumor malignancy and growth. By detecting and disturbing this activity through personalized treatments, it is the hope to provide better diagnostics and care to patients. Experimenting with multicellular tumor spheroids (MCTS) allows for a rapid, inexpensive and convenient solution to studying multiple in vitro tumors. High quality magnetic resonance images of small samples, such as spheroid, however, are difficult to achieve with current radio frequency coils. In addition, in order for the information provided by these scans to accurately represent the interactions and metabolic activity in vivo, there is a need for a perfused vascular network. A perfused vascular network has the potential to improve metabolic realism and particle transport within a tumor spheroid. By creating a more life-like cancer model and allowing the progressive imaging of metabolic functions of such small samples, a better, more efficient mode of studying metabolic activity in cancer can be created and research efforts can expand. The progress described in this paper attempts to address both of these current shortcomings of metabolic cancer research and offers potential solutions, while acknowledging the potential of future work to improve cancer research with MCTS.


Download restricted.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Improving the Realism and Magnetic Resonance Imaging of Multicellular Tumor Spheroids
Contributors
Date Created
2016-12
Resource Type
  • Text
  • Machine-readable links