Full metadata
Title
A Determination of the Partial Decay Width for the hb -> etab gamma Radiative Transition of Bottomonium
Description
Because of its massive nature and simple two-body structure, the heavy meson bottomonium (the flavorless bound state of the bottom quark and anti-quark) is among the simplest systems available for the study of the strong force and quantum chromodynamics (QCD)—a feature which has made it of special interest to particle physicists.
Despite being bound by the strong force, bottomonium exhibits a rich spectrum of resonances corresponding to excited states extremely analogous to that of positronium or even familiar atomic systems. Transitions between these levels are possible via the absorption or emission of either a photon, gluon, or gluons manifesting as light hadrons. The goal of this thesis was to establish a theoretical value for the currently unmeasured partial decay width for one such transition—the electromagnetic decay channel hb -> etab gamma. To this end, two methods were utilized.
The first approach relied on the presumption of a nonrelativistic constituent quark model interacting via a simple static potential, allowing for radial wave functions and energy eigenvalues to be obtained for the states of interest via the Schrödinger equation. Upon an application of the standard electromagnetic multipole expansion followed by a utilization of the electric dipole E1 decay width formula, a value of 57.7 ± 0.4 keV was obtained.
The second approach stemmed from the effective Lagrangian describing the bottomonium P to S electromagnetic transitions and relied on the presumption that a single coupling constant could be approximated as describing all nP to mS transitions regardless of spin. A value for this coupling constant could then be extracted from the 1P to 1S spin triplet data and used to predict the width for the singlet 1P to 1S transition. The partial decay width value found in this manner was 47.8 ± 2.0 keV.
Various other methods and models have established a predicted range of 35 to 60 keV for this partial decay width. As the values determined in this thesis fall within the expected range, they agree well with our current understanding of this electromagnetic transition and place further confidence on the expected range.
Despite being bound by the strong force, bottomonium exhibits a rich spectrum of resonances corresponding to excited states extremely analogous to that of positronium or even familiar atomic systems. Transitions between these levels are possible via the absorption or emission of either a photon, gluon, or gluons manifesting as light hadrons. The goal of this thesis was to establish a theoretical value for the currently unmeasured partial decay width for one such transition—the electromagnetic decay channel hb -> etab gamma. To this end, two methods were utilized.
The first approach relied on the presumption of a nonrelativistic constituent quark model interacting via a simple static potential, allowing for radial wave functions and energy eigenvalues to be obtained for the states of interest via the Schrödinger equation. Upon an application of the standard electromagnetic multipole expansion followed by a utilization of the electric dipole E1 decay width formula, a value of 57.7 ± 0.4 keV was obtained.
The second approach stemmed from the effective Lagrangian describing the bottomonium P to S electromagnetic transitions and relied on the presumption that a single coupling constant could be approximated as describing all nP to mS transitions regardless of spin. A value for this coupling constant could then be extracted from the 1P to 1S spin triplet data and used to predict the width for the singlet 1P to 1S transition. The partial decay width value found in this manner was 47.8 ± 2.0 keV.
Various other methods and models have established a predicted range of 35 to 60 keV for this partial decay width. As the values determined in this thesis fall within the expected range, they agree well with our current understanding of this electromagnetic transition and place further confidence on the expected range.
Date Created
2016-12
Contributors
- Ireland, Aurora Nicole (Author)
- McCartney, Martha (Thesis director)
- Foy, Joseph (Committee member)
- Maximon, Leonard (Committee member)
- Department of Physics (Contributor)
- Barrett, The Honors College (Contributor)
Topical Subject
Resource Type
Extent
17 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2016-2017
Handle
https://hdl.handle.net/2286/R.I.41845
Level of coding
minimal
Cataloging Standards
System Created
- 2017-10-30 02:50:58
System Modified
- 2021-08-11 04:09:57
- 3 years 3 months ago
Additional Formats