Description
Prostate cancer is the second most common kind of cancer in men. Fortunately, it has a 99% survival rate. To achieve such a survival rate, a variety of aggressive therapies are used to treat prostate cancers that are caught early. Androgen deprivation therapy (ADT) is a therapy that is given in cycles to patients. This study attempted to analyze what factors in a group of 79 patients caused them to stick with or discontinue the treatment. This was done using naïve Bayes classification, a machine-learning algorithm. The usage of this algorithm identified high testosterone as an indicator of a patient persevering with the treatment, but failed to produce statistically significant high rates of prediction.
Details
Title
- Naïve Bayes Classification for Analyzing Prostate Cancer Treatment Outcomes
Contributors
- Millea, Timothy Michael (Author)
- Kostelich, Eric (Thesis director)
- Kuang, Yang (Committee member)
- Computer Science and Engineering Program (Contributor)
- Barrett, The Honors College (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2016-12
Subjects
Resource Type
Collections this item is in