Full metadata
Title
Dissolvable Metal Supports - Simplifying Metals Printing
Description
Additive Manufacturing and 3D printing are becoming important technologies in the manufacturing sector. The benefits of this technology include complex part geometry, short lead-times, low waste, and simple user interface. However, the technology does not come without its drawbacks: mainly the removal of support structures from the component. Traditional techniques that involve sawing and cutting can be expensive and take a long time, increasing the overall price of 3D printed metal components. This paper discusses two approaches taken for dissolvable support structures in 3D printed stainless steel (17-4 PH). For the first time in powder bed fusion components, with the help of Christopher Lefky and Dr. Owen Hildreth, dissolvable support capabilities are achieved in metal prints. The first approach, direct dissolution, involves direct corrosion of the entire part, leading to support removal. This approach is not self-terminating, and leads to changes in final component geometry. The second approach involves a post-build sensitization step, which physically alters the microstructure and chemical stability of the first 100-200 microns of the metal. The component is then etched at an electric potential that will readily corrode this sensitized surface, but not the underlying base metal. An electrolytic solution of HNO3/KCl/HCl paired with an anodic bias was used for the direct dissolution approach, resulting in a loss of about 120 microns of material from the components surface. For the self-limiting approach, surface sensitization was achieve through a post build annealing step (800 C for 6 hours, air cooled) with exposure to a sodium hexacynoferrate slurry. When the slurry decomposes in the furnace, carbon atoms diffuse into the surface and precipitate a chromium-carbide, which reduces the chemical stability of the stainless steel. Etching is demonstrated in an anodic bias of HNO3/KCl. To determine proper etching potentials, open circuit potential and cyclic voltammetry experiments were run to create Potentiodynamic Polarization Curves. Further testing of the self-terminating approach was performed on a 316 stainless steel interlocking ring structure with a complex geometry. In this case, 32.5 hours of etching at anodic potentials replaced days of mechanical sawing and cutting.
Date Created
2016-12
Contributors
- Zucker, Brian Nicholas (Co-author)
- Lefky, Christopher (Co-author)
- Hildreth, Owen (Co-author, Thesis director)
- Hsu, Keng (Committee member)
- Materials Science and Engineering Program (Contributor)
- Barrett, The Honors College (Contributor)
Topical Subject
Resource Type
Extent
29 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2016-2017
Handle
https://hdl.handle.net/2286/R.I.42736
Level of coding
minimal
Cataloging Standards
System Created
- 2017-10-30 02:50:58
System Modified
- 2021-08-11 04:09:57
- 3 years 3 months ago
Additional Formats