Full metadata
Title
The Development of a Comfortable Myoelectric Prosthetic Socket \u2014 Fishbone
Description
This paper proposes a new socket design to complement Project Fishbone, a design project focused on creating a lightweight transradial prosthetic device. The socket has a simple concept of introducing perforations on the surface of the socket using cost effective, and rapid manufacturing methods such as vacuum thermoforming and drilling. The perforations on the socket allows for greater air ventilation to the prosthetic user's residual skin thus reducing the temperature within the socket. There were nine primary design iterations that were tested: 0.125, 0,187, 0.25-inch-thick designs, and 3/16, 15/64, 17/64-inch perforation sizes, and 12, 18 and 24 count of perforations. Initial test was done using the sockets of different thickness without any perforations to check for uniformity in design and manufacturing method using a regression test. It was found that an increase in thickness directly related to an increase in temperature cooling time. The temperature cooling test was run using a three-factor DOE method and no clear interaction between the factors was observed, thus the Kruskal-Wallis statistical test along with the post hoc Mann-Whitney test to check for significance among the factors as well as significance of groups within the factors. Statistical significance (p<0.05) was found in the socket thickness and size of perforations. Additionally, significance (p<0.02) was found in the 0.125 and 0.187-inch thickness and the 3/16-inch size perforations. Based on the significance between each group, the best combination for increased cooling time reduction was thus found to be with the 0.125-inch thick HDPE sheet and 3/16-inch sized perforation while the number of perforations did not make much difference. These results proved the concept of this new socket design that could be implemented into existing upper limb prosthetic systems.
Date Created
2017-05
Contributors
- Sebastian, Frederick (Author)
- LaBelle, Jeffrey (Thesis director)
- Lathers, Steven (Committee member)
- Harrington Bioengineering Program (Contributor, Contributor)
- Barrett, The Honors College (Contributor)
Topical Subject
Resource Type
Extent
6 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2016-2017
Handle
https://hdl.handle.net/2286/R.I.43463
Level of coding
minimal
Cataloging Standards
System Created
- 2017-10-30 02:50:58
System Modified
- 2021-08-11 04:09:57
- 3 years 2 months ago
Additional Formats