134059-Thumbnail Image.png
Description
With no known cure, Alzheimer's disease (AD) is the most common dementia, affecting more than 5.5 million Americans. Research has shown that women who undergo surgical menopause (i.e. removal of the ovaries) before the onset of natural menopause are at

With no known cure, Alzheimer's disease (AD) is the most common dementia, affecting more than 5.5 million Americans. Research has shown that women who undergo surgical menopause (i.e. removal of the ovaries) before the onset of natural menopause are at a greater risk for AD. It is hypothesized that this greater relative risk of developing AD is linked to ovarian hormone deprivation associated with surgical menopause. The purpose of these studies was to evaluate the behavioral changes that occur after a short-term (ST) and a long-term (LT) ovarian hormone deprivation in a mouse model of AD. Wildtype (Wt) or APP/PS1 (Tg) mutation mice underwent either a sham surgery or an ovariectomy (Ovx) surgery at three months of age. Study 1 consisted of a short-term cohort that was behaviorally tested one month following surgery on a battery of spatial memory tasks including, the Morris water maze, delayed matched-to-sample water maze, and visible platform task. Study 2 consisted of a long-term cohort that was behaviorally tested on the same cognitive battery three months following surgery. Results of Study 1 revealed that genotype interacted with surgical menopause status, such that after a short-term ovarian hormone deprivation, Ovx induced a genotype effect while Sham surgery did not. Results of Study 2 showed a similar pattern of effects, with a comparable interaction between genotypes and surgical menopause status. These findings indicate that the cognitive impact of ovarian hormone deprivation depends on AD-related genotype. Neuropathology evaluations in these mice will be done in the near future and will allow us to test relations between surgical menopause status, cognition, and AD-like neuropathology.


Download restricted.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • An Evaluation of the Cognitive Effects of a Short-Term and a Long-Term Ovarian Hormone Deprivation in a Transgenic Mouse Model of Alzheimer's Disease: Addressing the Critical Window
Contributors
Date Created
2017-12
Resource Type
  • Text
  • Machine-readable links