134011-Thumbnail Image.png
Description
Machine learning for analytics has exponentially increased in the past few years due to its ability to identify hidden insights in data. It also has a plethora of applications in healthcare ranging from improving image recognition in CT scans to

Machine learning for analytics has exponentially increased in the past few years due to its ability to identify hidden insights in data. It also has a plethora of applications in healthcare ranging from improving image recognition in CT scans to extracting semantic meaning from thousands of medical form PDFs. Currently in the BioElectrical Systems and Technology Lab, there is a biosensor in development that retrieves and analyzes data manually. In a proof of concept, this project uses the neural network architecture to automatically parse and classify a cardiac disease data set as well as explore health related factors impacting cardiac disease in patients of all ages.


Download restricted.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Machine Learning Enabled Analytics for Health-Related Demographics: a Case Study Identifying Important Factors in Cardiac Disease
Date Created
2018-05
Resource Type
  • Text
  • Machine-readable links