133790-Thumbnail Image.png
Description
The synthesis of the bis(2-diphenylphosphinoethyl)amine chelating ligand (1) was a crucial component in the preparation of non-canonical amino acids (NCAAs) throughout the project. Studies in this project indicated the need to isolate the ligand from its hydrochloride salt form seen

The synthesis of the bis(2-diphenylphosphinoethyl)amine chelating ligand (1) was a crucial component in the preparation of non-canonical amino acids (NCAAs) throughout the project. Studies in this project indicated the need to isolate the ligand from its hydrochloride salt form seen in (1) which led to the synthesis of the brown oil, (Ph2PCH2CH2)2NH, (2). The ligand features a phosphine-nitrogen-phosphine group that is not observed in existing NCAAs. Phosphine groups are rarely seen in existing NCAAs and avoided by biochemists because they tend to oxidize before metal addition. In this project, (1) was used in a 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU) mediated method and palladium-catalyzed method to tether an amino acid to the nitrogen atom of the ligand framework. Both methods were monitored through the use of Nuclear Magnetic Resonance (NMR) spectroscopy. While the palladium catalyzed method exhibited little to no coupling, the 31P NMR spectrum obtained for the HATU mediated method did reveal that some coupling had occurred. The unsuccessful attempts to tether an amino acid to (1) led to the hypothesis that the phosphine groups were interfering with the palladium catalyst during the cross-coupling reaction. In an effort to test this hypothesis, (2) was reacted with the dimer, [Rh(nbd)Cl]2, to coordinate the rhodium metal to the free phosphorous arms and the nitrogen atom of the isolated PNP ligand. The PNP-based metal complex was used in the palladium catalyzed method, but cross-coupling was not observed. The new PNP-based metal complex was investigated to demonstrate that it exhibits moisture and air stability.


Download restricted.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Synthesis of Enzyme-Mimetic Catalysts
Contributors
Date Created
2018-05
Resource Type
  • Text
  • Machine-readable links