Description
As life expectancy continually rises, many age-related conditions such as deteriorated gait and decreased stability begin to play a larger role in affecting the quality of life for all individuals. Medical expenses associated with falls in the elderly population surpassed $50 Billion in 2015 alone. Understanding fall risk and developing robust metrics and methods of assessment has become more important than ever. While traditional fall risk has looked at classical gait parameters, dynamic stability has gained traction as a more accurate representation of stability during active movement and daily activities. This project seeks to determine the effects on the internal perturbation of gait velocity on dynamic stability represented by the Maximal Lyapunov Exponent (MLE) of multiple acceleration vectors, as well as the efficacy of varying methodology used to assess dynamic stability. Data from 15 healthy, college aged individuals was collected. Significant differences were shown between certain gait velocity trials for one analysis of the three methods explored, while overall trends suggested potential differences between gait velocities with other methodologies warranting further investigation.
Details
Title
- The Effects of Perturbation on Dynamic Stability for Fall Risk Analysis
Contributors
- Kreisler, Itai Goeta (Author)
- Lockhart, Thurmon (Thesis director)
- Rezvanian, Saba (Committee member)
- W.P. Carey School of Business (Contributor)
- Harrington Bioengineering Program (Contributor)
- Barrett, The Honors College (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2018-05
Subjects
Resource Type
Collections this item is in