Description
This paper attempts to introduce analytics and regression techniques into the National Hockey League. Hockey as a sport has been a slow adapter of analytics, and this can be attributed to poor data collection methods. Using data collected for hockeyreference.com, and R statistical software, the number of wins a team experiences will be predicted using Goals For and Goals Against statistics from 2005-2017. The model showed statistical significance and strong normality throughout the data. The number of wins each team was expected to experience in 2016-2017 was predicted using the model and then compared to the actual number of games each team won. To further analyze the validity of the model, the expected playoff outcome for 2016-2017 was compared to the observed playoff outcome. The discussion focused on team's that did not fit the model or traditional analytics and expected forecasts. The possible discrepancies were analyzed using the Las Vegas Golden Knights as a case study. Possible next steps for data analysis are presented and the role of future technology and innovation in hockey analytics is discussed and predicted.
Included in this item (3)
Details
Title
- Analytics in the National Hockey League (NHL): A Regression of Goals For, Goals Against and Wins from 2005-2017
Contributors
Agent
- Vermeer, Brandon Elliot (Author)
- Goegan, Brian (Thesis director)
- Eaton, John (Committee member)
- School of Mathematical and Statistical Sciences (Contributor)
- Department of Finance (Contributor)
- Barrett, The Honors College (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2018-05
Subjects
Collections this item is in