133301-Thumbnail Image.png
Description
Phylogenetic analyses that were conducted in the past didn't have the ability or functionality to inform and implement useful public health decisions while using clustering. Models can be constructed to conduct any further analyses for the result of meaningful data

Phylogenetic analyses that were conducted in the past didn't have the ability or functionality to inform and implement useful public health decisions while using clustering. Models can be constructed to conduct any further analyses for the result of meaningful data to be used in the future of public health informatics. A phylogenetic tree is considered one of the best ways for researchers to visualize and analyze the evolutionary history of a certain virus. The focus of this study was to research HIV phylodynamic and phylogenetic methods. This involved identifying the fast growing HIV transmission clusters and rates for certain risk groups in the US. In order to achieve these results an HIV database was required to retrieve real-time data for implementation, alignment software for multiple sequence alignment, Bayesian analysis software for the development and manipulation of models, and graphical tools for visualizing the output from the models created. This study began by conducting a literature review on HIV phylogeographies and phylodynamics. Sequence data was then obtained from a sequence database to be run in a multiple alignment software. The sequence that was obtained was unaligned which is why the alignment was required. Once the alignment was performed, the same file was loaded into a Bayesian analysis software for model creation of a phylogenetic tree. When the model was created, the tree was edited in a tree visualization software for the user to easily interpret. From this study the output of the tree resulted the way it did, due to a distant homology or the mixing of certain parameters. For a further continuation of this study, it would be interesting to use the same aligned sequence and use different model parameter selections for the initial creation of the model to see how the output changes. This is because one small change for the model parameter could greatly affect the output of the phylogenetic tree.


Download restricted.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Analysis of HIV Risk Groups Using Bayesian Analysis
Contributors
Date Created
2018-05
Resource Type
  • Text
  • Machine-readable links