Full metadata
Title
Identifying Novel Nanobodies for Traumatic Brain Injury Therapeutics
Description
Traumatic brain injury (TBI) is a serious health problem around the world with few available treatments. TBI pathology can be divided into two phases: the primary insult and the secondary injury. The primary insult results from the bump or blow to the head that causes the initial injury. Secondary injury lasts from hours to months after the initial injury and worsens the primary insult, creating a greater area of tissue damage and cell death. Many current treatments focus on lessening the severity of secondary injury. Secondary injury results from the cyclical nature of tissue damage. Inflammatory pathways cause damage to tissue, which in turn reinforces inflammation. Since many inflammatory pathways are interconnected, targeting individual products within these pathways is impractical. A target at the beginning of the pathway, such as a receptor, must be chosen to break the cycle. This project aims to identify novel nanobodies that could temporarily inactivate the CD36 receptor, which is a receptor found on many immune and endothelial cells. CD36 initiates and perpetuates the immune system's inflammatory responses. By inactivating this receptor temporarily, inflammation and immune cell entry could be lessened, and therefore secondary injury could be attenuated. This project utilized phage display as a method of nanobody selection. The specific phage library utilized in this experiment consists of human heavy chain (V_H) segments, also known as domain antibodies (dAbs), displayed on M13 filamentous bacteriophage. Phage display mimics the process of immune selection. The target is bound to a well as a means of displaying it to the phage. The phage library is then incubated with the target to allow antibodies to bind. After, the well is washed thoroughly to detach any phage that are not strongly bound. The remaining phage are then amplified in bacteria and run again through the same assay to select for mutations that resulted in higher affinity binding. This process, called biopanning, was performed three times for this project. After biopanning, the library was sequenced using Next Generation sequencing (NGS). This platform enables the entire library to be sequenced, as opposed to traditional Sanger sequencing, which can only sequence single select clones at a time thereby limiting population sampling. This type of genetic sequencing allows trends in the complementarity determining regions (CDRs) of the domain antibody library to be analyzed, using bioinformatics programs such as RStudio, FastAptamer, and Swiss Model. Ultimately, two nanobody candidates were identified for the CD36 receptor.
Date Created
2018-05
Contributors
- Lundgreen, Kendall (Author)
- Stabenfeldt, Sarah (Thesis director)
- Ugarova, Tatiana (Committee member)
- School of Life Sciences (Contributor)
- School of International Letters and Cultures (Contributor)
- Barrett, The Honors College (Contributor)
Topical Subject
Resource Type
Extent
23 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2017-2018
Handle
https://hdl.handle.net/2286/R.I.48612
Level of coding
minimal
Cataloging Standards
System Created
- 2018-05-05 12:17:18
System Modified
- 2021-08-11 04:09:57
- 3 years 4 months ago
Additional Formats