Full metadata
Title
Examination of an Organometallic Complex on Insulin Resistance in Periadolescent Male Rats Following a 10-week High Fat Diet
Description
With the rising prevalence of obesity and diabetes, novel treatments to help mitigate or prevent symptoms of these conditions are warranted. Prior studies have shown that fossilized plant materials found in soil lowers blood sugar in a mouse model of diabetes. The goal of this study is to determine whether a similar organometallic complex (OMC) could prevent insulin resistance in the skeletal muscle brought on by chronic high fat intake by examining the protein expression of key enzymes in the insulin signaling pathway and examining glucoregulatory measures. Six-week-old periadolescent male Sprague-Dawley rats (n=42) were randomly chosen to be fed either a high fat diet (HFD) (20% protein, 20% carbohydrates [6.8% sucrose], 60% fat) or a standard chow diet (18.9% protein, 57.33% carbohydrates, 5% fat) for 10 weeks. Rats from each diet group were then randomly assigned to one of three doses of OMC (0, 0.6, 3.0 mg/mL), which was added to their drinking water and fasting blood glucose was measured at baseline and again at 10 weeks. After 10 weeks, rats were euthanized, and soleus muscle samples were isolated, snap-frozen, and stored at -80°C until analyses. Fasting plasma glucose was measured using a commercially available glucose oxidase kit. Following 6 and 10 weeks, HFD rats developed significant hyperglycemia (p<0.001 and p=0.025) compared to chow controls which was prevented by high dose OMC (p=0.021). After 10 weeks, there were significant differences in fasting serum insulin between diets (p=0.009) where levels were higher in HFD rats. No significant difference was seen in p-PI3K expression between groups. These results suggest that OMC could prevent insulin resistance by reducing hyperglycemia. Further studies are needed to characterize the effects of diet and OMC on the insulin signaling pathway in skeletal muscle, the main site of postprandial glucose disposal. This study was supported by a grant from Isagenix International LLC as well as funds from Barrett, the Honors College at Arizona State University, Tempe Campus.
Date Created
2018-12
Contributors
- Starr, Ashlee (Author)
- Sweazea, Karen (Thesis director)
- Johnston, Carol (Committee member)
- Hyatt, JP (Committee member)
- Sanford School of Social and Family Dynamics (Contributor)
- School of Life Sciences (Contributor)
- Barrett, The Honors College (Contributor)
Topical Subject
Resource Type
Extent
20 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2018-2019
Handle
https://hdl.handle.net/2286/R.I.50916
Level of coding
minimal
Cataloging Standards
System Created
- 2018-11-12 11:40:36
System Modified
- 2021-08-11 04:09:57
- 3 years 4 months ago
Additional Formats