Description
Ion channels in the membranes of cells in the body allow for the creation of action potentials from external stimuli, allowing us to sense our surroundings. One particular channel, TRPM8, is a trans-membrane ion channel believed to be the primary cold sensor in humans. Despite this important biological role and intense study of the channel, TRPM8 is not fully understood mechanistically and has not been accurately modeled. Existing models of TRPM8 fail to account for menthol activation of the channel. In this paper we re-implement an established whole cell model for TRPM8 with gating by both voltage and temperature. Using experimental data obtained from the Van Horn lab at Arizona State University, we refined the model to represent more accurately the dynamics of the human TRPM8 channel and incorporate the channel activation through menthol agonist binding. Our new model provides a large improvement over preexisting models, and serves as a basis for future incorporation of other channel activators of TRPM8 and for the modeling of other channels in the TRP family.
Download count: 1
Details
Title
- Data-driven Modeling of TRPM8 Ion Channel Kinetics
Contributors
- Ackerman, David (Author)
- Crook, Sharon (Thesis director)
- Van Horn, Wade (Committee member)
- School of Earth and Space Exploration (Contributor)
- School of Mathematical and Statistical Sciences (Contributor)
- Barrett, The Honors College (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019-05
Subjects
Resource Type
Collections this item is in