Description
Motor skill acquisition, the process by which individuals practice and consolidate movement to become faster, more accurate and efficient, declines with age. Initial skill acquisition is dominated by cortical structures; however as learning proceeds, literature from rodents and songbirds suggests that there is a transition away from cortical execution. Recent evidence indicates that the reticulospinal system plays an important role in integration and retention of learned motor skills. The brainstem has known age-rated deficits including cell shrinkage & death. Given the role of the reticulospinal system in skill acquisition and older adult’s poor capacity to learn, it begs the question: are delays in the reticulospinal system associated with older adult’s poor capacity to learn?
Our objective was to evaluate if delays in the reticulospinal system (measured via the startle reflex) are correlated to impairment of motor learning in older adults. We found that individuals with fast startle responses resembling those of younger adults show the most learning and retention of that learning while individuals with delayed startle responses show the least. Moreover, linear regression analysis indicated that startle onset latency exists within a continuum of learning outcomes suggesting that startle onset latency may be a sensitive measure to predict learning deficits in older adults. As there exists no method to determine an individual’s relative learning capacity, these results open the possibility of startle, which is an easy and inexpensive behavioral measure, being used to predict learning deficits in older adults to facilitate better dosing during rehabilitation therapy.
Our objective was to evaluate if delays in the reticulospinal system (measured via the startle reflex) are correlated to impairment of motor learning in older adults. We found that individuals with fast startle responses resembling those of younger adults show the most learning and retention of that learning while individuals with delayed startle responses show the least. Moreover, linear regression analysis indicated that startle onset latency exists within a continuum of learning outcomes suggesting that startle onset latency may be a sensitive measure to predict learning deficits in older adults. As there exists no method to determine an individual’s relative learning capacity, these results open the possibility of startle, which is an easy and inexpensive behavioral measure, being used to predict learning deficits in older adults to facilitate better dosing during rehabilitation therapy.
Details
Title
- Delays in reticulospinal system are correlated with deficits in motor learning in older adults.
Contributors
- Schreiber, Joseph James (Author)
- Honeycutt, Claire (Thesis director)
- Schaefer, Sydney (Committee member)
- Harrington Bioengineering Program (Contributor, Contributor)
- Barrett, The Honors College (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019-05
Subjects
Resource Type
Collections this item is in