Full metadata
Title
Automated Bicycle Human-in-the-Loop Control
Description
Bicycles are already used for daily transportation by a large share of the world's population and provide a partial solution for many issues facing the world today. The low environmental impact of bicycling combined with the reduced requirement for road and parking spaces makes bicycles a good choice for transportation over short distances in urban areas. Bicycle riding has also been shown to improve overall health and increase life expectancy. However, riding a bicycle may be inconvenient or impossible for persons with disabilities due to the complex and coordinated nature of the task. Automated bicycles provide an interesting area of study for human-robot interaction, due to the number of contact points between the rider and the bicycle. The goal of the Smart Bike project is to provide a platform for future study of the physical interaction between a semi-autonomous bicycle robot and a human rider, with possible applications in rehabilitation and autonomous vehicle research.
This thesis presents the development of two balance control systems, which utilize actively controlled steering and a control moment gyroscope to stabilize the bicycle at high and low speeds. These systems may also be used to introduce disturbances, which can be useful for studying human reactions. The effectiveness of the steering balance control system is verified through testing with a PID controller in an outdoor environment. Also presented is the development of a force sensitive bicycle seat which provides feedback used to estimate the pose of the rider on the bicycle. The relationship between seat force distribution is demonstrated with a motion capture experiment. A corresponding software system is developed for balance control and sensor integration, with inputs from the rider, the internal balance and steering controller, and a remote operator.
This thesis presents the development of two balance control systems, which utilize actively controlled steering and a control moment gyroscope to stabilize the bicycle at high and low speeds. These systems may also be used to introduce disturbances, which can be useful for studying human reactions. The effectiveness of the steering balance control system is verified through testing with a PID controller in an outdoor environment. Also presented is the development of a force sensitive bicycle seat which provides feedback used to estimate the pose of the rider on the bicycle. The relationship between seat force distribution is demonstrated with a motion capture experiment. A corresponding software system is developed for balance control and sensor integration, with inputs from the rider, the internal balance and steering controller, and a remote operator.
Date Created
2019-05
Contributors
- Bush, Jonathan Ernest (Author)
- Zhang, Wenlong (Thesis director)
- Sandy, Douglas (Committee member)
- Software Engineering (Contributor, Contributor)
- Engineering Programs (Contributor)
- Barrett, The Honors College (Contributor)
Topical Subject
Resource Type
Extent
67 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2018-2019
Handle
https://hdl.handle.net/2286/R.I.52823
Level of coding
minimal
Cataloging Standards
System Created
- 2019-04-20 12:00:32
System Modified
- 2021-08-11 04:09:57
- 3 years 3 months ago
Additional Formats