Full metadata
Title
Synthesis and Characterization of 2D Metal-organic Frameworks for Mixed-matrix Membrane Gas Separations
Description
Membrane-based technology for gas separations is currently at an emerging stage of advancement and adoption for environmental and industrial applications due to its substantial advantages like lower energy and operating costs over the conventional gas separation technologies. Unfortunately, the available polymeric (or organic) membranes suffer a trade-off between permeance and selectivity. Mixed matrix membranes (MMMs) containing two-dimensional (2D) metal-organic frameworks (MOFs) as fillers are a highly sought approach to redress this trade-off given their enhanced gas permeabilities and selectivities compared to the pure polymeric membrane. These MMMs are increasingly gaining attention by researchers due to their unique properties and wide small- and large-scale gas separation applications. However, straightforward and scalable methods for the synthesis of MOFs nanosheets have thus far been persistently elusive. This study reports the single-phase preparation, and characterization of MMMs with 2D MOFs nanosheets as fillers. The prepared MOF and the polymer matrix form the ‘dense’ MMMs which exhibit increased gas diffusion resistance, and thus improved separation abilities. The single-phase approach was more successful than the bi-phase at synthesizing the MOFs. The influence of sonication power and time on the characteristics and performance of the membranes are examined and discussed. Increasing the sonication power from 50% to 100% reduces the pore size. Additionally, the ultimate effect on the selectivity and permeance of the MMMs with different single gases is reported. Analysis of results with various gas mixers indicates further performance improvements in these MMMs could be achieved by increasing sonication time and tuning suitable membrane thicknesses. Reported results reveal that MMMs are excellent candidates for next-generation gas mixture separations, with potential applications in CO2 capture and storage, hydrogen recovery, alkene recovery from alkanes, and natural gas purification.
Date Created
2019-05
Contributors
- Nkuutu, John (Author)
- Mu, Bin (Thesis director)
- Shan, Bohan (Committee member)
- Chemical Engineering Program (Contributor)
- School of Sustainability (Contributor)
- Barrett, The Honors College (Contributor)
Topical Subject
Resource Type
Extent
19 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2018-2019
Handle
https://hdl.handle.net/2286/R.I.53118
Level of coding
minimal
Cataloging Standards
System Created
- 2019-04-27 12:00:22
System Modified
- 2021-08-11 04:09:57
- 3 years 3 months ago
Additional Formats