Description
Typical eukaryotic organelles use membranes formed by lipid bilayers in order to compartmentalize their functions within the cell. However, cells also contain membraneless organelles formed by intrinsically disordered proteins (IDPs) via liquid-liquid phase separation. The organelles form localized compartments that separate their contents from the environment.1 Here, this mechanism is used to generate artificial membraneless organelles that comprise a chemical reaction. An IDP, DEAD-box helicase (Ddx4), was bioconjugated to an enzyme, horseradish peroxidase (HRP), through the use of a bifunctional chemical linker, succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC), in order to examine if the enzyme could be incorporated in droplets and whether its activity would be affected. The conjugation of HRP-SMCC (43.4 kDa) to Ddx4 (25.6 kDa) was successful: SDS-PAGE analysis confirmed the presence of a product that was within the range of a full conjugate.
Details
Title
- Bioconjugation of Enzymes and IDPs for Development of Membraneless Organelles
Contributors
- Favila, Saul Roberto (Author)
- Ghirlanda, Giovanna (Thesis director)
- Vaiana, Sara (Committee member)
- Allen, James (Committee member)
- School of Molecular Sciences (Contributor)
- Barrett, The Honors College (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2020-05
Resource Type
Collections this item is in