Description
Objective: A recent electroencephalogram (EEG) study of adults with dyslexia showed that individuals with dyslexia have diminished auditory sensory gating compared to typical controls. Previous studies done involving intoxication and its effect on sensory gating and creativity have shown that there is a positive correlation between creativity (divergent thinking problem solving) and sensory gating deficiency. With previous study findings, the link between dyslexia and sensory gating deficiency and the link between sensory gating deficiency and creativity have been shown, but not the link between dyslexia and creativity. This pilot study aims to address this knowledge gap using event-related potentials.
Methods: Two adults with dyslexia and 4 control adults participated in an auditory gating test using tone pairs. Latencies and Amplitudes for the N100 and P200 responses were recorded and analyzed. Participants were also administered the Abbreviated Torrance Test for Adults (ATTA), a test of creative ability designed to evaluate divergent thinking in individuals. Results were averaged and compared.
Results: The averaged difference in measured N100 amplitudes between tone 1 and tone 2 was significantly larger in the control group compared to the difference observed in the dyslexia group. In particular, one participant with dyslexia who had low scores on a task of rapid word recognition also showed no evidence of gating at the N100 component, whereas the other participant with dyslexia with good word recognition scores showed evidence of intact gating. The averaged difference in measured P200 amplitude between tone 1 and tone 2 was larger in the dyslexia group compared to the control group; however, the difference was small enough to be considered insignificant. The total average ATTA score for the control group was higher than the average of the dyslexia group. This difference in total average was less than one point on a 106-point scale.
Conclusions: Neural sensory gating occurs approximately 100 ms after the onset of a stimulus and is diminished in adults with dyslexia who also have deficits in rapid word recognition. There is a difference in creativity, in terms of divergent thinking, between those with dyslexia and those without (controls scored higher on average); however, the difference is not significant (less than one point). Dyslexia scores were more consistent than controls.
Methods: Two adults with dyslexia and 4 control adults participated in an auditory gating test using tone pairs. Latencies and Amplitudes for the N100 and P200 responses were recorded and analyzed. Participants were also administered the Abbreviated Torrance Test for Adults (ATTA), a test of creative ability designed to evaluate divergent thinking in individuals. Results were averaged and compared.
Results: The averaged difference in measured N100 amplitudes between tone 1 and tone 2 was significantly larger in the control group compared to the difference observed in the dyslexia group. In particular, one participant with dyslexia who had low scores on a task of rapid word recognition also showed no evidence of gating at the N100 component, whereas the other participant with dyslexia with good word recognition scores showed evidence of intact gating. The averaged difference in measured P200 amplitude between tone 1 and tone 2 was larger in the dyslexia group compared to the control group; however, the difference was small enough to be considered insignificant. The total average ATTA score for the control group was higher than the average of the dyslexia group. This difference in total average was less than one point on a 106-point scale.
Conclusions: Neural sensory gating occurs approximately 100 ms after the onset of a stimulus and is diminished in adults with dyslexia who also have deficits in rapid word recognition. There is a difference in creativity, in terms of divergent thinking, between those with dyslexia and those without (controls scored higher on average); however, the difference is not significant (less than one point). Dyslexia scores were more consistent than controls.
Details
Title
- Dyslexia, Creativity, and Neural Adaptation
Contributors
- Duran, Isaac (Author)
- Peter, Beate (Thesis director)
- Daliri, Ayoub (Committee member)
- Rogalsky, Corianne (Committee member)
- School of Life Sciences (Contributor)
- Barrett, The Honors College (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2020-05
Subjects
Resource Type
Collections this item is in