Description
Although Spotify’s extensive library of songs are often seen broken up by “Top 100” and main lyrical genres, these categories are primarily based on popularity, artist and general mood alone. If a user wanted to create a playlist based on specific or situationally specific qualifiers from their own downloaded library, he/she would have to hand pick songs that fit the mold and create a new playlist. This is a time consuming process that may not produce the most efficient result due to human error. The objective of this project, therefore, was to develop an application to streamline this process, optimize efficiency, and fill this user need.
Song Sift is an application built using Angular that allows users to filter and sort their song library to create specific playlists using the Spotify Web API. Utilizing the audio feature data that Spotify attaches to every song in their library, users can filter their downloaded Spotify songs based on four main attributes: (1) energy (how energetic a song sounds), (2) danceability (how danceable a song is), (3) valence (how happy a song sounds), and (4) loudness (average volume of a song). Once the user has created a playlist that fits their desired genre, he/she can easily export it to their Spotify account with the click of a button.
Song Sift is an application built using Angular that allows users to filter and sort their song library to create specific playlists using the Spotify Web API. Utilizing the audio feature data that Spotify attaches to every song in their library, users can filter their downloaded Spotify songs based on four main attributes: (1) energy (how energetic a song sounds), (2) danceability (how danceable a song is), (3) valence (how happy a song sounds), and (4) loudness (average volume of a song). Once the user has created a playlist that fits their desired genre, he/she can easily export it to their Spotify account with the click of a button.
Details
Title
- Song Sift: Angular Web App to Filter Songs and Create Customizable Playlists via the Spotify API
Contributors
- DiMuro, Louis (Author)
- Balasooriya, Janaka (Thesis director)
- Chen, Yinong (Committee member)
- Arts, Media and Engineering Sch T (Contributor)
- Computer Science and Engineering Program (Contributor)
- Barrett, The Honors College (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2020-05
Resource Type
Collections this item is in