Description
One very critical aspect of cell biology is the cytoskeleton. The cytoskeleton not only provides a strong foundation for the cell (Pegoraro et al., 2017), but it also allows for protein transport on its tracks that span long distances in

One very critical aspect of cell biology is the cytoskeleton. The cytoskeleton not only provides a strong foundation for the cell (Pegoraro et al., 2017), but it also allows for protein transport on its tracks that span long distances in cells (Löwe & Amos, 2009), specifically in neurons (Dent, 2017). Microtubules have a particular structure as polymers that are part of the cytoskeleton (Dent, 2017). Their components include alpha- and beta-tubulin dimers, and they have dynamic properties, such as polymerization and depolymerization (Dent, 2017). Concerning these dynamic properties and as will be discussed here, specific associated proteins can be useful in electrical signaling, neurodegeneration, and neurogenesis. In this review, I will review relevant findings on microtubule-associated proteins (MAPs), compare these to a prominent drug called taxol, and describe the significance of having a combination of MAPs in the brain. I will suggest that microtubules and their proteins form a critical geometric infrastructure that provides the framework for neuronal structure and function that contributes to more advanced cognitive processes, including consciousness.

Included in this item (3)


Details

Title
  • How Concepts of Electrical Signaling, Neurodegeneration, and Neurogenesis Help Explain the Formation of Higher Cognitive Function from a Geometrical System of Neuronal Microtubules and their Associated Proteins
Contributors
Agent
Date Created
2020-12

Machine-readable links