Full metadata
The pseudo-binary alloy of indium((x))gallium((1-x))nitride has a compositionally dependent bandgap ranging from 0.65 to 3.42 eV, making it desirable for light emitting diodes and solar cell devices. Through modeling and film growth, the authors investigate the use of InxGa1-xN as an active layer in an induced junction. In an induced junction, electrostatics are used to create strong band bending at the surface of a doped material and invert the bands. The authors report modeling results, as well as preliminary film quality experiments for an induced junction in InGaN by space charge effects of neighboring materials, piezoelectric effects, and spontaneous polarization. (C) 2013 American Vacuum Society.
- Williams, Joshua (Author)
- Williamson, Todd L. (Author)
- Hoffbauer, Mark A. (Author)
- Fischer, Alec M. (Author)
- Goodnick, Stephen (Author)
- Faleev, Nikolai (Author)
- Ghosh, Kunal (Author)
- Honsberg, Christiana (Author)
- Ira A. Fulton Schools of Engineering (Contributor)
Williams, J. J., Williamson, T. L., Hoffbauer, M. A., Fischer, A. M., Goodnick, S. M., Faleev, N. N., . . . Honsberg, C. B. (2013). Inducing a junction in n-type InxGa(1-x)N. Journal of Vacuum Science & Technology B, 31(3), 03C127. doi:10.1116/1.4797489
- 2013-09-18 04:06:11
- 2021-12-03 02:09:12
- 2 years 11 months ago