In this article, we study the global dynamics of a discrete two-dimensional competition model. We give sufficient conditions on the persistence of one species and the existence of local asymptotically stable interior period-2 orbit for this system. Moreover, we show that for a certain parameter range, there exists a compact interior attractor that attracts all interior points except Lebesgue measure zero set. This result gives a weaker form of coexistence which is referred to as relative permanence. This new concept of coexistence combined with numerical simulations strongly suggests that the basin of attraction of the locally asymptotically stable interior period-2 orbit is an infinite union of connected components. This idea may apply to many other ecological models. Finally, we discuss the generic dynamical structure that gives relative permanence.
Details
- Global Dynamics of a Discrete Two-Species Lottery-Ricker Competition Model
- Kang, Yun (Author)
- Smith, Hal (Author)
- College of Liberal Arts and Sciences (Contributor)
- Identifier TypeInternational standard serial numberIdentifier Value1751-3758
- Identifier TypeInternational standard serial numberIdentifier Value1751-3766
- Digital object identifier: 10.1080/17513758.2011.586064
- View the article as published at: http://www.tandfonline.com/doi/full/10.1080/17513758.2011.586064#.UsXa7MRDuH8
Citation and reuse
Cite this item
This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.
Kang, Y., & Smith, H. (2012). Global dynamics of a discrete two-species Lottery-Ricker competition model. Journal of Biological Dynamics, 6(2), 358–76. doi:10.1080/17513758.2011.586064