Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (P<0.01) in both greenhouse and field trials compared with the control plants. These results suggest that selection of tomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils.
Details
- Over-Expression of the Arabidopsis Proton-Pyrophosphatase AVP1 Enhances Transplant Survival, Root Mass, and Fruit Development Under Limiting Phosphorus Conditions
- Yang, Haibing (Author)
- Zhang, Xiao (Author)
- Gaxiola, Roberto (Author)
- Xu, Guohua (Author)
- Peer, Wendy Ann (Author)
- Murphy, Angus S. (Author)
- College of Liberal Arts and Sciences (Contributor)
-
Digital object identifier: 10.1093/jxb/eru149
-
Identifier TypeInternational standard serial numberIdentifier Value0022-0957
Citation and reuse
Cite this item
This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.
Yang, Haibing, Zhang, Xiao, Gaxiola, Roberto A., Xu, Guohua, Peer, Wendy Ann, & Murphy, Angus S. (2014). Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions. JOURNAL OF EXPERIMENTAL BOTANY, 65(12), 3045-3053. http://dx.doi.org/10.1093/jxb/eru149