Description

Carpal tunnel syndrome (CTS) impairs sensation of a subset of digits. Although the effects of CTS on manipulation performed with CTS-affected digits have been studied using precision grip tasks, the extent to which CTS affects multi-digit force coordination has only

Carpal tunnel syndrome (CTS) impairs sensation of a subset of digits. Although the effects of CTS on manipulation performed with CTS-affected digits have been studied using precision grip tasks, the extent to which CTS affects multi-digit force coordination has only recently been studied. Whole-hand manipulation studies have shown that CTS patients retain the ability to modulate multi-digit forces to object mass, mass distribution, and texture. However, CTS results in sensorimotor deficits relative to healthy controls, including significantly larger grip force and lower ability to balance the torques generated by the digits. Here we investigated the effects of CTS on multi-digit force modulation to object weight when manipulating an object with a variable number of fingers. We hypothesized that CTS patients would be able to modulate digit forces to object weight. However, as different grip types involve the exclusive use of CTS-affected digits (‘uniform’ grips) or a combination of CTS-affected and non-affected digits (‘mixed’ grips), we addressed the question of whether ‘mixed’ grips would reduce or worsen CTS-induced force coordination deficits. The former scenario would be due to adding digits with intact tactile feedback, whereas the latter scenario might occur due to a potentially greater challenge for the central nervous system of integrating ‘noisy’ and intact tactile feedback. CTS patients learned multi-digit force modulation to object weight regardless of grip type. Although controls exerted the same total grip force across all grip types, patients exerted significantly larger grip force than controls but only for manipulations with four and five digits. Importantly, this effect was due to CTS patients’ inability to change the finger force distribution when adding the ring and little fingers. These findings suggest that CTS primarily challenges sensorimotor integration processes for dexterous manipulation underlying the coordination of CTS-affected and non-affected digits.

Reuse Permissions
  • Downloads
    PDF (442.9 KB)

    Details

    Title
    • Effects of Carpal Tunnel Syndrome on Dexterous Manipulation Are Grip Type-Dependent
    Contributors
    Date Created
    2013-01-10
    Resource Type
  • Text
  • Collections this item is in
    Identifier
    • Digital object identifier: 10.1371/journal.pone.0053751
    • Identifier Type
      International standard serial number
      Identifier Value
      1045-3830
    • Identifier Type
      International standard serial number
      Identifier Value
      1939-1560
    Note
    • The article is published at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053751

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    Zhang, W., Johnston, J. A., Ross, M. A., Sanniec, K., Gleason, E. A., Dueck, A. C., & Santello, M. (2013). Effects of Carpal Tunnel Syndrome on Dexterous Manipulation Are Grip Type-Dependent. PLoS ONE, 8(1). doi:10.1371/journal.pone.0053751

    Machine-readable links