Description

Polymerases that synthesize artificial genetic polymers hold great promise for advancing future applications in synthetic biology. However, engineering natural polymerases to replicate unnatural genetic polymers is a challenging problem. Here we present droplet-based optical polymerase sorting (DrOPS) as a general

Polymerases that synthesize artificial genetic polymers hold great promise for advancing future applications in synthetic biology. However, engineering natural polymerases to replicate unnatural genetic polymers is a challenging problem. Here we present droplet-based optical polymerase sorting (DrOPS) as a general strategy for expanding polymerase function that employs an optical sensor to monitor polymerase activity inside the microenvironment of a uniform synthetic compartment generated by microfluidics. We validated this approach by performing a complete cycle of encapsulation, sorting and recovery on a doped library and observed an enrichment of ∼1,200-fold for a model engineered polymerase. We then applied our method to evolve a manganese-independent α-L-threofuranosyl nucleic acid (TNA) polymerase that functions with >99% template-copying fidelity. Based on our findings, we suggest that DrOPS is a versatile tool that could be used to evolve any polymerase function, where optical detection can be achieved by Watson-Crick base pairing.

Reuse Permissions
  • Downloads
    PDF (1.1 MB)

    Details

    Title
    • A General Strategy for Expanding Polymerase Function by Droplet Microfluidics
    Contributors
    Date Created
    2016-04-05
    Resource Type
  • Text
  • Collections this item is in
    Identifier
    • Digital object identifier: 10.1038/ncomms11235
    • Identifier Type
      International standard serial number
      Identifier Value
      2041-1723
    Note
    • The final version of this article, as published in Nature Communications, can be viewed online at: https://www.nature.com/articles/ncomms11235

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    Larsen, A. C., Dunn, M. R., Hatch, A., Sau, S. P., Youngbull, C., & Chaput, J. C. (2016). A general strategy for expanding polymerase function by droplet microfluidics. Nature Communications, 7, 11235. doi:10.1038/ncomms11235

    Machine-readable links