Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.
Details
- Sustaining Dry Surfaces Under Water
- Jones, Paul R. (Author)
- Hao, Xiuqing (Author)
- Cruz-Chu, Eduardo R. (Author)
- Rykaczewski, Konrad (Author)
- Nandy, Krishanu (Author)
- Schutzius, Thomas M. (Author)
- Varanasi, Kripa K. (Author)
- Megaridis, Constantine M. (Author)
- Walther, Jens H. (Author)
- Koumoutsakos, Petros (Author)
- Espinosa, Horacio D. (Author)
- Patankar, Neelesh A. (Author)
- Ira A. Fulton Schools of Engineering (Contributor)
- Digital object identifier: 10.1038/srep12311
- Identifier TypeInternational standard serial numberIdentifier Value2045-2322
- The final version of this article, as published in Scientific Reports, can be viewed online at: https://www.nature.com/articles/srep12311
Citation and reuse
Cite this item
This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.
Jones, P. R., Hao, X., Cruz-Chu, E. R., Rykaczewski, K., Nandy, K., Schutzius, T. M., . . . Patankar, N. A. (2015). Sustaining dry surfaces under water. Scientific Reports, 5(1). doi:10.1038/srep12311