Description

A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid

A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidance, with a square-root divergent enumeration function at the point of its termination. A composite density-temperature parameter ργ/T, often used to represent combined pressure and temperature data, follows from the model. The theory is in good agreement with the experimental data for excess (over the crystal state) thermodynamics of molecular glass formers. We suggest that the Kauzmann entropy crisis might be a signature of vanishing configurational entropy of a subset of degrees of freedom, multipolar rotations in our model. This scenario has observable consequences: (i) a dynamical crossover of the relaxation time and (ii) the fragility index defined by the ratio of the excess heat capacity and excess entropy at the glass transition. The Kauzmann temperature of vanishing configurational entropy and the corresponding glass transition temperature shift upward when the electric field is applied. The temperature shift scales quadratically with the field strength.

Downloads
PDF (547.5 KB)

Details

Title
  • Configurational Entropy of Polar Glass Formers and the Effect of Electric Field on Glass Transition
Contributors
Date Created
2016-07-20
Resource Type
  • Text
  • Collections this item is in
    Identifier
    • Digital object identifier: 10.1063/1.4959035
    • Identifier Type
      International standard serial number
      Identifier Value
      1833-3672
    • Identifier Type
      International standard serial number
      Identifier Value
      1839-3527
    Note
    • This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Journal of Chemical Physics and may be found at http://aip.scitation.org/doi/10.1063/1.4959035.

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    Matyushov, D. V. (2016). Configurational entropy of polar glass formers and the effect of electric field on glass transition. The Journal of Chemical Physics, 145(3), 034504. doi:10.1063/1.4959035

    Machine-readable links