Description

Lithium-beryllium metal hydrides, which are structurally related to their parent compound, BeH2, offer the highest hydrogen storage capacity by weight among the metal hydrides (15.93 wt. % of hydrogen for LiBeH3). Challenging synthesis protocols have precluded conclusive determination of their crystallographic

Lithium-beryllium metal hydrides, which are structurally related to their parent compound, BeH2, offer the highest hydrogen storage capacity by weight among the metal hydrides (15.93 wt. % of hydrogen for LiBeH3). Challenging synthesis protocols have precluded conclusive determination of their crystallographic structure to date, but here we analyze directly the hydrogen hopping mechanisms in BeH2 and LiBeH3 using quasielastic neutron scattering, which is especially sensitive to single-particle dynamics of hydrogen. We find that, unlike its parent compound BeH2, lithium-beryllium hydride LiBeH3 exhibits a sharp increase in hydrogen mobility above 265 K, so dramatic that it can be viewed as melting of hydrogen sublattice. We perform comparative analysis of hydrogen jump mechanisms observed in BeH2 and LiBeH3 over a broad temperature range. As microscopic diffusivity of hydrogen is directly related to its macroscopic kinetics, a transition in LiBeH3 so close to ambient temperature may offer a straightforward and effective mechanism to influence hydrogen uptake and release in this very lightweight hydrogen storage compound.

Reuse Permissions
  • Downloads
    PDF (1.7 MB)

    Details

    Title
    • Hydrogen Mobility in the Lightest Reversible Metal Hydride, LiBeH3
    Date Created
    2017-11-24
    Resource Type
  • Text
  • Collections this item is in
    Identifier
    • Digital object identifier: 10.1038/s41598-017-16504-0
    • Identifier Type
      International standard serial number
      Identifier Value
      2045-2322
    Note
    • The final version of this article, as published in Scientific Reports, can be viewed online at: http://www.nature.com/articles/s41598-017-16504-0

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    Mamontov, E., Kolesnikov, A. I., Sampath, S., & Yarger, J. L. (2017). Hydrogen mobility in the lightest reversible metal hydride, LiBeH3. Scientific Reports, 7(1). doi:10.1038/s41598-017-16504-0

    Machine-readable links