Zeolitic Imidazolate Frameworks (ZIFs) are one of the potential candidates as highly conducting networks with surface area with a possibility to be used as catalyst support. In the present study, highly active state-of-the-art Pt-NCNTFs catalyst was synthesized by pyrolyzing ZIF-67 along with Pt precursor under flowing Ar-H2 (90-10 %) gas at 700 °C. XRD analysis indicated the formation of Pt-Co alloy on the surface of the nanostructured catalyst support. The high resolution TEM examination showed the particle size range of 7 to 10 nm. Proton exchange membrane fuel cell performance was evaluated by fabricating membrane electrode assemblies using Nafion-212 electrolyte using H2/O2 gases (100 % RH) at various temperatures. The peak power density of 630 mW.cm2 was obtained with Pt-NCNTFs cathode catalyst and commercial Pt/C anode catalyst at 70 °C at ambient pressure.
Details
- Nanocatalysts for Low Temperature Fuel Cells
- Kannan, Arunachala Mada (Author)
- Ira A. Fulton School of Engineering (Contributor)
-
Digital object identifier: 10.1016/j.egypro.2017.10.037
-
Identifier TypeInternational standard serial numberIdentifier Value1876-6102
Citation and reuse
Cite this item
This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.
Kannan, A. (2017). Nanocatalysts for Low Temperature Fuel Cells. Energy Procedia, 138, 14-19. doi:10.1016/j.egypro.2017.10.037